

BOARD XSA50

Estructura y funcionamiento de la placa XSA50

FCEIA

LDD

Programación de la FPGA

La implementación de un diseño lógico sobre una FPGA, en general, pasa por las siguientes etapas:

✓ Se describe un circuito lógico con un HDL (o esquema, o ME, etc.)

✓ Se usa un programa sintetizador para transformar el HDL en un *netlist*. La aplicación utilizada (Xilinx Synthesis Technology -XST), genera un archivo tipo NGC (EDIF + NCF – constricciones-).

 ✓ Se usan herramientas de implementación para mapear las puertas lógicas y sus conexiones (descriptos en el *netlist*) sobre la lógica de una FPGA (CLB, I/OB y matriz de interconexiones)

✓ Una vez logrado el mapeo, ubicación e interconexión (paso anterior) se extrae el estado lógico de las llaves de interconexión (en las matrices de interconexión o ruteo), generando el *bitstream*.

 El bitstream es bajado a la memoria del chip de la FPGA (si todo anda bien, esta luego se comportará según la descripción del código VHDL) fceia

Codigo fuente VHDL

XILINX

fceia ldd

Una vista general

XILINX

Esquemático

fceia

Componentes principales

- FPGA Spartan XC2S50
- CPLD XC9572 XL
- Generador de Clock Programable DS1075
- Memoria RAM dinámica sincrona (SDRAM) de 16 Mbyte
- Memoria Flash (EEPROM) de 256K
- algunos "jumpers" que se usan en la fase de configurción

Periféricos

- 4 micro interruptores
- 1 pulsador
- 1 display de 7 segmentos
- 1 puerto paralelo (interfaceado vía el CPLD)
- 1 salida VGA manejada directamente por la FPGA
- 1 interfase PS2

fceia

Seteo de los jumpers

- Estas llaves deben manipularse sólo si:
 - Se programa la FPGA usando la aplicación de programación JTAG de Xilinx.
 - Se reprograma la frecuencia del reloj.
 - Se cambia la forma de alimentar con tensión la placa.
 Importante: Las placas del Laboratorio están seteadas para trabajar con las siguientes condiciones: 1) programación de la FPGA con la aplicación GXSLOAD; 2) reloj con frecuencia de 50 MHz y 3) única fuente de alimentación de 9V DC.

<u>i NO CAMBIAR!</u>

Arquitectura

EXILINX

Documentación

- Procurarse la información:
 - file: xsa-manual-v1_2.pdf (44 páginas)

XS tools.pdf (18 páginas)

- sitio: www.xess.com
- Es útil porque::
 - Describe el funcionamiento del soft de la XESS
 - Describe la disposición y conexionado
 - pinout de los componenetes
 - señales involucradas
 - utilización del CPLD como interface
 - herramientas XS para bajar datos por la interface paralela

Las XSTOOLS

GXSTEST – Testea la placa

GXSSETCLK – Setea el reloj

GXSLOAD – Carga datos en: FPGA, CPLD y FLASH

GXSPORT – Conecta los 8 *pins de datos* del puerto paralelo con la FPGA

Test de la placa

- Test de autodiagnóstico de la placa
- Configura primero el CPLD y luego la FPGA
- Si todo es correcto, muestra un "O" en el display
- Caso contrario pone una "E"

fceia

ldd

• De haber errores, lo más común es problemas con el cable o puerto paralelo.

NOTA: Verifivcar que esté seteado a 50 Mhz.

Configuaración del CLOCK

- Se puede configurar el reloj para entregar frecuencias desde 100 MHz hasta 48,7 KHz. (divisor entre 1 y 2052)
- Se configura el DS1075 para modificar la fecuencia bajando los datos por el puerto paralelo.
- Sin tensión en la placa, se coloca el *shunt* en las patas 2 y 3 del *jumper* J6 y luego se corre el "gxssetclk"
- La frecuencia seteada se memoriza en soporte no volátil <u>NOTA</u>: No realizar esta operación con las placas del Laboratorio

fceia

PROGRAMACION DE LA PLACA

Se puede programar la FPGA o el CPLD \Box FPGA \Rightarrow .BIT \Box CPLD \Rightarrow .SVF

Con el el menú Generate Programming File, se genera el archivo (bitstream) *file*.bit

fceia Idd

Utilización de la herramienta GXSLOAD

	🔀 gxslo-ad	- IX
	Board Type XSA-100 -	Load
GXSLOAD		ISN/EEPHUM
	High Address	
	Low Address	
	Upload Format HEX 💽 🗀 HE	X .

• La herramienta permite:

fceia

- la configuración de la FPGA (carga *file*.bit) y/o del CPLD (*file*.svf)
- cargar datos en la RAM
- cargar el programa en la EEPROM (no volatil)
- Todas estas operaciones significan una preconfiguración del CPLD (que hace de interface entre el puerto paralelo y el dispositivo)

fceia ldd

Configuración de la EEPROM

- Para configurar la EEPROM
 - Verificar que los 4
 Switches estén en
 OFF
 - Bajar archivos .EXO ó .MCS
 - el display de 7 segmentos se iluminará durante la fase de configuración

fceia ldd

Transferir datos de EEPROM a PC

Display

•El segmento se ilumina cuando entra una señal alta, según el siguiente esquema

Función	Pin
S0	67
S1	39
S2	62
S3	60
S4	46
S5	57
S6	49
punto	44

Switches

fceia

- Los switches tienen conectada una resistencia pull up, es decir que entregan un valor alto cuando el switch está en OFF
- La señal de estos, es conducida a FPGA, CPLD, FLASH
- Cuando no se utilizan es conveniente que los switches estén todos en OFF

- Es el medio de comunicación entre la placa y la PC
 - A través de esta:
 - se configura el clock
 - se configura el CPLD
 - se configura la FPGA
 - se accede a las memorias Flash y SDRAM
 - Se configuran

fceia

- 4 lineas de control CO-C3
- 8 lineas de dato D0-D7
- 5 lineas de estado S3-S6
- El CPLD funciona de interface y debe ser configurado convenientemente.

- Detalle:
 - C0 es usada para la configuración del oscilador
 - los dos buffer 74LS14 son "triggher Schmitt" (buffer con histéresis)y son empleados para "limpiar" la señal de eventuales ruidos
 - S6 (linea de estado) es usada como línea directa de comunicación desde la FPGA a la PC

– Las restante 15 lineas las maneja el CPLD como interface

- Detalle:
 - C1,C2,C3 (TCK,TMS,TDI) sirven para configurar el CPLD con el protocolo JTAG (*Join Test Action Group*)
 - "IEEE Std. 1149.1-1990 Test Access Port and Boundary-Scan Architecture"
 - S7 es conectada a TDO (comunicación del CPLD a la PC)
 - tantoTCK como TDO son "bufferadas"
 - Las restantes líneas son de propósito general y serán empleadas para transferir datos entre la FPGA y la PC, con el CPLD actuando como interface.

fceia Idd

- El CPLD será programado como interface paralelo de la FPGA .
 - el archivo downldpar.svf es usado para esto (viene con el sistema XESS)
- la linea D1 es convenientemente bufferada. Esta linea puede ser usado para ingresar un eventual clock externo y ser usado por cualquier máquina de estado programada dentro del CPLD.

- El dato viene configurado sobre un bus de 8 bit, que "interfacea" el CPLD a la FPGA
 - (este bus es común para la Flash y el Display)
- M1 y M2 conectan a VCC y GND
- M0 configura
 - slave serial
 - master select (SelectMAP slave parallel)
- El CPLD accede a la señal JTAG (TCK, TMS, TDI, TDO) de la FPGA (para eventual testeo o para la programación con la aplicación de software JTAG Programmer de Xilinx)

- Cuando la FPGA ha sido configurada, la señal DONE cambia a nivel alto, entonces:
 - el CPLD cambia su función y se vuelve "transparente" entre el puerto y la FPGA
 - Datos (D's) a la FPGA y señal de estados (S's) hacia la PC

fceia ldd

Utilización de la herramienta GXSPORT

 Se puede emplear esta herramienta de Xess para bajar datos desde la PC a la FPGA, seleccionando los valores, unos y ceros, en el teclado de abajo

🔼 gxsport				<u> </u>
0 0 0 D7 D6 D5 Strobe	0 0 D4 D3 jount	1 1 D2 D1 Port LPT	D0	Exit

Otras configuraciones del CPLD

- Emulación del cable JTAG de XILINX
- Escritura de datos sobre la Flash
- Sistema de control para leer datos de la flash y proveerlos a la FPGA (configuración como esclavo paralelo)

fceia ldd

PRECAUCIÓN 1

- La FPGA envía datos al PP a traves de S3,S4,S5 (pins 40,29,28)
- La FPGA recive señal del PP a través de D0-D7 (pins 50,48,42,47,65,51,43,58) por lo tanto estos pines
 NO DEBEN SER CONFIGURADOS COMO SALIDAS !!

NOTA: La FPGA usa estos pines para acceder a la FLASH, pero en este caso pone un nivel bajo en CE (pin 41) y el CPLD responde liberando la linea (pone alta impedancia)

fceia ldd

fceia

ldd

PRECAUCIÓN 2

- La línea D7 del PP es usada tambien para manejar la linea PROG de la FPGA
- Por lo tanto si se "baja" esta linea se obtiene ua "desprogramación"
 de la FPGA

PRECAUCIÓN 3

- El CPLD señala con un punto decimal sobre el display cuando una configuración váilida se ha bajado sobre la FPGA
- Por lo tanto el pin 44 de la FPGA (que es usado para esto), NO DEBE CONFIGURARSE COMO SALIDA (DAÑO SOBRE LA FPGA O CPLD)

NOTA: La FPGA usa este pin para acceder a FLASH, pero en este caso, al poner un niverl bajo en CE (pin 41) el CPLD responde, liberando la línea

fceia

Conexionado usado

PRCAUCION 4

El manual provisto por XESS marca:

Con 1 asterisco los pines que pueden utilizarse con Propósito General

Con 2 asteriscos aquellos que se pueden utilizar sólo despues de una conveniente RECONFIGURACIÓN del CPLD

Sin ningún asterisco NO PUEDEN SER UTILIZADOS

fceia ldd

Pines libres

Se sugiere usar los siguientes pines

77, 78, 79, 80, 83, 84, 85, 86, 87

Alimentacion

- Usar una alimentación de 9 V con el POSITIVO al centro. La placa genera las voltages necesarios.
- Se manipulan "Jumpers" si la alimentación

Voltage	Pin	Note
+5V	2	
+3.3V	22	Remove the shunt from jumper J7 if you wish to use your own +3.3V supply.
		Leave the shunt on jumper J7 to generate the +3.3V supply from the +5V supply.
+2.5V	54	Remove the shunt from jumper J2 if you wish to use your own +2.5V supply.
		Leave the shunt on jumper J2 to generate the +2.5V supply from the +3.3V supply.
GND	52	

